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SELF MOTION OF A BODY IN A FLUID 

V. L. Sennitskii UDC 532.516 

I. Many bodies (ships, living creatures) are capable of self-motion in a fluid, i.e., 
they move themselves by pushing fluid away from them. 

The well-known (see [i], for example) equations of motion of a rigid body with respect 
to an inertial reference frame are 

dP b dL b 
d--F = F; -~- = N, 

where t is the time, Pb is the momentum of the body, F is the total external force acting on 
the body, Lb is the angular momentum of the body about the point O (the origin of the coordi- 
nate system), N is the total external torque acting on the body about point O. Therefore in 
the case when the body translates by pushing away the surrounding fluid we must have 

dPb__ ( 1 . 1 )  
d-F - -  S f  ->b 

dL b 
d--7- = Tf.+ b ( i. 2 ) 

where S f~. b is the momentum transferred by the fluid to the body per unit time and T:f~ b is 
the angular momentum transferred by the fluid to the body per unit time about point O. Equa- 
tions (i.i) and (1.2) are the basic equations describing self-motion of a body in a fluid. 

In the presence of body forces, the total force acting on the body must be added to the 
right hand side of (i.i) and the total moment of the forces (torque) about point O must be 
added to the right hand side of (1.2). 

Self-motion of a body in a fluid is possible because of the interaction between the 
boundary of the body and the fluid (but not as the result of any disturbances in the fluid 
which could also occur in the absence of the body). Hence the boundary of the self-moving 
body serves as its driver, In self-motion the operation of the driver is such that condi- 
tions exist on the boundary of the body for which the equations of self-motion are satisfied. 

2. An approximate solution of the problem was found in [2, 3] for steady flow of a vis- 
cous incompressible fluid past a self-moving body (a circular cylinder and a sphere). In the 
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present paper we consider the unsteady flow of a viscous incompressible fluid past a self- 
moving body. 

The self-moving body is assumed to be a homogeneous sphere with a moving boundary. The 
velocity U of the boundary relative to the sphere varies periodically in time with period T. 
The motion of the fluid and sphere are considered with respect to a nonrotating system of 
rectangular coordinates Xi, X2, X 3 with the origin of the coordinate system at the center of 
the sphere. The sphere rotates about the X 3 axis. The motion of the fluid is symmetric 
about the X 3 axis, is steady (it does not depend on the initial conditions) and varies in 
time periodically with period T. 

Let �9 = t/T, A be the radius of the sphere, x i = XI/A , x 2 = X2/A , x 3 = X3/A; r = (xl, 
x2, x3) ; r, 0, ~ are spherical coordinates related to xl, x2, x 3 by the relations xl = 
rsin0cos~, x 2 = rsin0sin~, x~ = rcos O; Psph is the density of the sphere, pf is the density 
of the fluid, p = Psph/Pf, k = (0, 0, i), Wk is the velocity of the center of the sphere with 
respect to the fluid at infinity, w = TW/A, ~k is the angular velocity of the sphere, ~ = T~, 
V is the velocity of the fluid, v = TV/A, Vr, vs, vr are the r, 0, T components of the vector 
v, P is the fluid pressure, P~ is the fluid pressure at infinity, p = Tz(P - P~)/(pfA2), U 0 
and Ur are the O and ~ components of the vector U, U is the magnitude IU]; u o ~ UffU(uo = u~(O, 
~); u~ = U~U (u~ = u~(O, T)); E = UT/A; v is the kinematic viscosity of the fluid, Re = A2/(vT) 
is the Reynolds number, P is the stress tensor in the fluid, p = T2P/(gfA2); n is the unit 
outward normal to the surface, s is the sphere r = i, V = (8/8xi, 8/8x2, 8/8x3) ; 5 = 82/ 
axl 2 + a:/ax2 2 + a~/ax~ ~. 

The equations of self-motion of the sphere, the Navier-Stokes equations, the equation 
of continuity, and the boundary conditions at the surface of the sphere and at infinity can 
be written as 

S S p . n  ds - -  
4 n  dw 
~ p T s  0; (2.i) 

8 

- - T g o ~ - k  = O; ( 2 . 2 )  
s 

Ov ~--~ d W k =  0; (2.3) a-~ + (v .V) v + Vp -- Av + d~ 

V.v = O; (2.4) 

vr = O, v o = e u o ,  v ~  = 8 u r  @ o3 s in  0 for  p = l;  ( 2 . 5 )  

v N --tv'k, p ~ 0 for  r - ~  oo. ( 2 . 6 )  

It is required to find w, ~, v, p. 

3. We will consider the problem (2.1)-(2.6) for values of E which are small in com- 
parison with unity. We assume that when e § 0 

6 

w (~, e, Re, ~)) --, ~ s~w(n) (~, Re, p); 

O)(T, e, Re, p ) N  8o)(1 ) (~, Re, p); 

v(r, % e, Re, p ) N  eva)(r ' z, Re, p); 

p(r, ~, 8, Re, p) N 8p(1)(r , T, Re, p). 

The asymptotic expansions obtained in the limit g + 0 and constant 
inner expansions. Using (2.1)-(2.6) and (3.1)-(3.4) we find 

r,T, Re, 

( 3 . 1 )  

( 3 . 2 )  

( 3 . 3 )  
(3.4) 

p will be called 

2 av(1)'~ co ~ [ c)l)(1)0 s in  0] 2 dw(1 ) 
0 

n-~ J k or -- ~ - ~  = 
0 

OV(1) .~ Vp(1 ) t -4- dw(1) k 0; 

(3.5) 

(3.6) 

( 3 . 7 )  

267 



V "%r(1) = O; 

v(or  ---- O, u(n o = Uo, v(1), = u,  + ~o(n sin 0 for r ~--- 1; 

v(1 ) N --w(x}k ' P(n ~ 0 f o r  r - ~  co, 

where  v ( ~ ) r ,  v (~ )O ,  v ( ~ ) ,  a r e  t h e  r ,  ~, ~ components  o f  t h e  v e c t o r  v(o. 

We w r i t e  u 0 and u~ in  t h e  form o f  t h e  s e r i e s  

Uo= ~ (~l~o,=l 

where Ds Dim, ~s ~im are constants 
Legendre functions. 

(3.8) 

(3.9) 

(3.1o) 

+ Real ~ e ~ i '~  P~) m=l n~m ] (cos 0); 

+ Real m=l ~ ~lme~ra=i*)P~l'(c~ 

(~zo < 0,  D20 ~ 0, ~20 6 0 ) ;  P s  a r e  t h e  a s s o c i a t e d  

The problem (3.5)-(3.10) has the solution 

w(1) w(1)0 + R~al ~ e 2m~i~. 
rn= 1 

i 2m~T o)(1) = ~(~)o + Real o)(1)me ; 

g'(1)r ~ r~sinO00, V(1)O rsinO Or' 

v(1)r ---- ~ (~zo + (O(no6zl) r -z-1 + Real ~l~ + f0(1)rn6/1 r-1/2Kl+l/2 (qmr) e 2m~i~ p~l) (cos 0); l=1 ,~=1 Kl+l/~ (q'~) 

P(i) = l=1 [ -  ~ ~ l  + Re [ Or 3 r 2 Or + r - - - ' 5 " ~  - -  d----~- 

(tell) 0 = 2 ~]10; 7s n~ ~ 6 qm + t (20 + t) q% + 9q~ + 9 ~11~; 

q ~ + 3 q m + 3  
O)(1)o = - -  ~1o; 0)(1)o = - -  5 9q3m "4- (9 -{- 5) q2 m + thq m + t5 ~lm; 

1 2 t 
~= %hP~l) (eos 0) sin 0; ~z= ---[w(1)r  8t l+'[[(2~llo--W(1)ofzO r - ~ -  

l=1 

--(2~1,0 3Wmo6u)r- '+2]--2!-Real  ~ [[9 K'+l/~<qm) - 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

} e2m~i~ 
(q~ + 3q~ + 3)w(1)~6tl] r - l  2~zm--3w(1)~SZl rl/2Kz+l/2 (qmr) 2 ; 

__  - -  q ~  K l _ l ]  ~ ( q ~ )  q ~  

qm = (i + i) r 6 is the Kronecker delta, Ps are the Legendre polynomials, Ks177 are 
the MacDonald functions). 

The relations 

w = 8w(o , ~ = 8eO) , v = ev(o, p =eP(o (3.16) 

and (3.11)-(3.15) determine the approximate solution of the problem (2.1)-(2.6). 

4. The solution (3.1i)-(3.16) satisfies the boundary condition (2.6) at infinity exact- 
ly. However, it incorrectly characterizes the disturbances of the motion of the fluid for 
r z i/e [using (3.13), (3.14), and (3.16) it is not difficult to show that when r ~ i/e the 
quantity (v.v)v) cannot be neglected in (2.3)]. 

We determine approximate expressions for the velocity disturbance v @ wkand pressure 
disturbance p in the entire region occupied by the fluid. Together with the inner expansions 
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(3.3) and (3.4) we will also consider the outer expansions of v and p. The inner and outer 
expansions of v and p must be consistent with one another in correspondence with the match- 
ing principle for asymptotic expansions [4]. 

We write (2.3), (2.4), and the condition (2.6) in the form 

Ov ~2 _ d w k = O; 

V v = O ;  

v ~ - -wk,  p ~ 0 for r - +  ~ ,  
^ ^  ^ ~  ^ ^  

w h e r e  ~ = (8 /8x l ,  a/~xz,  8/@x3) ;  A = a 2 / a X l 2  + ~ 2 / ~ x 2 2  + ~ 2 / ~ x 3  

~ x z ) ;  ~ = Er .  We a s sume  t h a t  i n  t h e  l i m i t  e + 0 

2 /^ 
<x = Ex 1 i, 

(4.1) 

(4.2) 

(4.3) 

i= = Ex2, ~ = 

r t=2  

6 

p (r'---~, T, s, l:~e, p) -- ~ 8n-lp(n) (r, "t:, Re, p), 
9 2 ~  2 

(4.4) 

(4.5) 

where r:er. Asymptotic expansions obtained in the limit e ~ 0 and constant r, T, Re, p 
will be called outer expansions. Using (4.1)-(4.5) we find 

- i ~v(3) ] 8x5 (4.6) 

_ _ I ~v(4)] aK6 0; 

V-V (K) = 0 ;  ( 4 . 7 )  

v (K) ~ - -  w(K)k, p ( K ) ~  0 for  r - +  oo ( 4 . 8 )  

(K = 2, 3, 4, 5, 8). 

The m a t c h i n g  c o n d i t i o n s  f o r  t h e  i n n e r  and  o u t e r  e x p a n s i o n s  o f  v and p a r e  

IsEeLV = EeLIaV (L = 1 , 2 , 3 , 4 , 5 , 6 ) ;  ( 4 . 9 )  

IsEaM p = EaMIsp ( M =  0, t , 2 , 3 , 4 , 5 ) ,  ( 4 . 1 0 )  

where I and E are operators corresponding to the inner and outer expansions, respectively 
(see [2, 5]). 

Using (3.3), (3.4), (3.13)-(3.15), (4.4), (4.5), we find that the conditions (4.9) and 
(4.10) are satisfied when L = i, M = 0. 

We write W(k), v(k), p(k) (k = 2, 3, 4, 5) in the form of the series 

co 

w(~} = w(~)o -4- Real ~_~ w e 2mai~" (~)m 

v (~) v(0 ~) + Real v m e  ; 

p(~) = pp)  + Heal ~ p(g)e 2~a~, 
~n=l  

where W(k)0 , W(k)m are constants and v~ ), v~ ), p~), p~) are functions o f  

I t  f o l l o w s  f r o m  ( 4 . 6 ) - ( 4 . 1 0 )  w i t h  K = 2,  L = 2 ,  M = 1 and  ( 3 . 3 ) ,  ( 3 . 4 ) ,  ( 3 . 1 3 ) - ( 3 . 1 5 ) ,  
(4.4), (4.5) that 

v~ ) ---w(2)mk ( m = t , 2  . . . .  ); ( 4 . 1 1 )  

p(~) = O; (4.12) 
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where Vor (2), v0o (2), 
with K = 4 and (3.11) and (4.11), we obtain 

where X = -Req~o/3. 

(c is a constant). 

It follows from 
(4.4), (4.5) that 

V.vo (2) = O; 

v~ ~ ) ~ - w ( ~ ) o k  for ~ -+0~ ;  

2 .(2) 4 (~(o~)) = o, 4 (~ ~oo ) = o, 4 ( ~ g ) )  = o, 
Vo~ (~) are the r, 9, ~ components of the vector 

ReVp~ *) + 2;~ (k .V)  v(o =' -- Av~2) = O, 

The problem (4.13)-(4.16) has the solution 

v (~) = - -  w(2)ok; 

p(o 4) = c 

v~ '~ 

(4.6)-(4.10) with K = 3, L = 3, M = 2 and (3.3), (3.4 

the vector v~ ) 

v~ ) = -- w(3)~k (m = 1, 2 . . . .  ); 

p(a) ~ 0; 

~.42 = o; 

v(o 3) ~ -- w(a)ok for r'--+ OO; 

4 (~(o~)) = - 3 ~ o ~ - ' P ~  (cos o), 

where Vor (3), v00 (3), Vow(3) are the r, O, (p components of 
with K = 5 and (3.11), (4.11), (4.17), (4.19), we obtain 

Re ~'p~) + 2~ (k.V)v(o a) - -  Av(o 3, = 0. 

The p r o b l e m  ( 4 . 2 1 ) - ( 4 . 2 4 )  h a s  t h e  s o l u t i o n  
i(8) O~ t 0% 

o, = ~7 + 2~ ~ -- ~ cos O, 

~(3) i 0~D . I ~Z 
oo = ~O-O- + 2~ O0 + % sin O; 

(4.13) 

(4.i4) 

(4.is) 

Using (4.6) 

(4.16) 

(4.17) 

(4.18) 

, (3.13)-(3.15), 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

Using (4.6) 

(4.24) 

(4.25) 

It follows 
(4.17) that 

0~ = O; 

/05 ) 2~ / o o  ^ i s i n 0 ~ + c '  = ~ ( - ~ 7  c~ + T ] 

(4.26) 

(4.27) 

2 ~ 2 ]  cos0  + -~;r ~ = - - ~ r  3 ~ ~  + 2 = - -  

f rom ( 4 . 6 ) ,  ( 4 . 8 ) ,  (4 .9)  wi th  K = 4, n = 4 and ( 3 . 3 ) ,  ( 3 .14 ) ,  ( 4 . 4 ) ,  ( 4 .11 ) ,  

0~ = O; (4.28) 

V~ 4),',-' 0 for 7--+oo; (4.29) 

I~ (~4v~4)) = S~oor-'P(~ I) (cos 0), (4.30) 

where vr is the ~ component of the vector v(4). Using (4.6) with K = 6 and (3.11), (4.11), 
(4.17), (4.19), (4.26), (4.28), we obtain 
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2~k.Vv(r ~) -- Av~ ~) + 7~ sin2 0 = 0. 
(4.31) 

The problem (4.29)-(4.31) has the solution 

v~)=  % _~r(cosO-1) t ~ 3 3 ~-~r ~ i + ~ - ~ ) + ~ : 0  i + - ~ +  cosO sinO ( 4 . ] 2 )  

($ is  a c o n s t a n t ) .  

The momentum of the sphere and fluid inside a closed surface b containing the sphere, 
and the angular momentum of the sphere and fluid about the origin of the coordinate system 
x~, xi, x3 vary periodically with �9 with period i. Hence, we must have the relations 

0 

g + l  

J" Y •  [p .n - -  v ("-)1} = O. ( 4 . 3 4 )  
T G 

Using (3.11), (4.4), (4.5), (4.11), (4.12), (4.17)-(4.20), (4.25)-(4.27), (4.32)-(4.34), we 
obtain 

= O, ~ = --~2o. ( 4 . 3 5 )  

A p p l y i n g  t h e  a d d i t i v e  method f o r  t h e  i n n e r  and o u t e r  e x p a n s i o n s  [ 4 ] ,  we f i n d  t h a t  in  
t h e  e n t i r e  r e g i o n  o c c u p i e d  by t h e  f l u i d  t h e  r ,  e,  ~ components  o f  t h e  v e c t o r  v + wk and p 
a r e  g i v e n  a p p r o x i m a t e l y  by t h e  r e l a t i o n s  

v ,+wcosO ~(v(~)~+w(~)cosO)+e3~ (a) 0 ) + u  _ = kVo~ + w(a)o COS 3 e~l,or-2 (t + 3 cos 20); (4.36) 

vo -- w sin 0 = e (v{~)o -- w{1) sin O) + e ~ (Jo~) -- ~v(a)o sin 0); (4.37) 

3 (4 38~ v~ = evO~ ~ + e4v$ 4) - -  ~ e~20 r -~  s in  20; " " 

p = ep(1) 

and by ( 3 . 1 3 ) - ( 3 . 1 5 ) ,  ( 4 . 2 5 ) ,  ( 4 . 3 2 ) ,  ( 4 . 3 5 ) .  

5. We consider the asymptotic behavior of the velocity disturbance of the fluid at 
large distances from the sphere (small E). Using (3.13), (3.14), (4.25), (4.32), (4.35)- 
(4.38), we obtain 

2 2 
E~, t e l + X 2  

~ 2 X 3 Vr + w c o s 0  3e~2~ x~ + x~ 1 e , 
x3 ( 5 . 1 )  

2 2 
e% Xl+X2 ( - -  3e2~]20 z 1 ~- z 3 /2  2 x 3 

v e - w s i n 0 ~  4x~/2 \ x-----~l e 

2 2 
e k  ~r  

2sX~20 t e~ x i + x e  e 
Ucp , '~ x~/2 x3 4 x 3 

in the limit x 3 + +~ and constant (xl 2 + xiZ)/x3, ~, e, Re, p. According to (5.1), the 
velocity disturbance becomes steady at large distances from the sphere and falls off as X3 -2 
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